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A numerical method employing an upwind finite-difference technique is adopted for 
an investigation of peristaltic pumping in circular cylindrical tubes, such as some 
organs in the living body. Various peristaltic flows are calculated under conditions 
of finite wave amplitudes, finite wavelengths and finite Reynolds numbers, and the 
influence of the magnitude of these quantities on the flow is investigated. The fluid 
mechanics of peristaltic mixing and transport are studied in detail by analysing the 
reflux and the trapping phenomena. The mechanical efficiency of peristaltic pumping 
is also discussed, with reference to engineering and physiological applications. It is 
shown that quantitative differences are observed between the results obtained for 
flows in a circular cylindrical tube and a two-dimensional plane channel. However, 
for both cases the appearance of peristaltic reflux depends upon the Reynolds 
number and the wavenumber (mean tube radius/wavelength). Much greater 
peristaltic mixing and transport are realized in a circular tube than in a plane 
channel. 

1. Introduction 
Peristaltic pumping is well known as a form of fluid transport that is used by many 

systems in the living body to propel or to mix the contents of a tube. In  1969, 
Shapiro, Jaffrin & Weinberg investigated the fluid mechanics of peristaltic pumping 
in connection with the function of systems such as the ureter, the gastro-intestinal 
tract, the small blood vessels, and other glandular ducts. They found that there were 
two physiologically significant phenomena called ‘ reflux ’ and ‘trapping ’ in 
peristaltic flow. The former refers to the net retrograde motion of some part of the 
fluid in a direction opposite to the wave propagation on the wall. The latter means 
the development and transport of an internally circulating bolus of fluid. 

The mechanism of this mixing and transporting peristaltic motion has aroused 
general interest in the field of hydrodynamics, and a number of studies have been 
done to understand peristaltic motion in different situations. The early literature has 
been reviewed by Jaffrin & Shapiro (1971). The results of some of the theoretical 
investigations are summarized in table 1, arranged according to the flow geometry 
and the following parameters of the problem : 

amplitude ratio qb = e /h;  (1) 

wavenumber a = h /h ;  ( 2 )  
Reynolds number Re = (ch/v)  a ;  (3) 
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Author(s) Geometry R, a $ Other restrictions 

Shapiro, Jaffrin & Weinberg P, A 0 0 arb. 

Pozrikidis (1987) P 0 arb. arb. 
Jaffrin (1973) P small small arb. 
Zien & Ostrach (1970) P small small arb. zero mean flow 
Li (1970) A small small arb. zero mean flow 
Manton (1975) A small small arb 
Liron (1976) P, A small small arb. 
Fung & Yih (1968) P arb. arb. small $R,a < 1 
Yin & Fung (1969) A arb. arb. small $R,a < 1 
Hanin (1968) P arb. 0 small zero mean pressure 

gradient 
Longuet-Higgins (1983) P arb small small 
Ayukawa, Kawai & Kimura P high small small 

( 1969) 

(1981) 
TABLE 1 .  Summary of theoretical investigations. P, plane channel ; A. axisymmetric tube. 

FIGURE 1 .  Geometry of axisymmetric tube and travelling wave system 

where c, h and c are the wave amplitude, the wavelength and the wave speed 
respectively, h is the mean tube radius and v is the kinematic viscosity (see figure 1). 
Besides these investigations, there are many analyses of other similar topics, such as 
the interaction of the elastic wall and the fluid (Rath 1978), the effect of a non- 
uniform tube (Gupta & Seshadri 1976), the effect of a non-Newtonian fluid (Bohme 
& Friedrich 1983), and the effect of a peripheral layer (Srivastava & Srivastava 1984 
and Brasseur, Corrsin & Lu 1987). Most of these studies have been made under 
certain simplifying assumptions regarding the magnitudes of the wave amplitude, 
the wavelength, the Reynolds number and the time-mean flow, and the general 
approach has been to employ asymptotic expansions of one kind or another in the 
parameters $, ct and Re. Therefore, although these analyses give us the main feature 
of peristaltic pumping a t  small values of these parameters, they are not sufficient to 
describe the mechanisms of the flow for general conditions. On the other hand, a few 
numerical investigations have also been reported. Tong & Vawter (1972) obtained 
finite-element solutions in the limit of creeping motion. Brown & Hung (1977) used 
the finite-difference method in a study concerned with nonlinear flow at finite 
Reynolds numbers. Takabatake & Ayukawa (1982, hereinafter referred to as T & A) 
also presented finite-difference solutions for two-dimensional peristaltic flows. 
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It is the purpose of the present paper to solve the problem of peristaltic pumping 
in an axisymmetric tube by generalizing the numerical method of T & A to the 
axisymmetric case. It has now been accepted that the cases of a two-dimensional 
channel and an axisymmetric tube yield qualitatively similar results. But, since 
glandular ducts and other tracts of the body involving peristalsis are approximately 
cylindrical in shape and the flow seems to be somewhat more axisymmetric than two- 
dimensional, the axisymmetric case would probably be more realistic physiologically. 
There is also merit in studying the axisymmetric case to identify differences between 
the two cases. In  this paper a numerical investigation of the influence of the 
magnitudes of wave amplitude, wavelength, Reynolds number, and time-mean flow 
on an axisymmetric peristaltic flow is conducted. In  particular, the fluid mechanics 
of peristaltic mixing and transport are studied in detail by analysing the reflux and 
the trapping phenomena. From a comparison of these results with those for the two- 
dimensional plane case, the quantitative difference between both cases is evaluated. 

In  addition, the mechanical efficiency of peristaltic pumping is analysed in this 
paper. In  regard to efficiency, Shapiro et al. (1969) conducted a primary study for the 
limiting flow of infinite wavelength and zero Reynolds number. However, these 
authors discovered that they made a calculated mistake in reducing the efficiency 
expression in the axisymmetric case and this error seems to have been left 
uncorrected. The correct expression for the efficiency is presented in Appendix B, and 
the pumping characteristics are discussed through numerical calculations over a wide 
parameter range for both the axisymmetric- and the two-dimensional-flow cases. 

Our analysis has the following limitation. Although the theoretical analyses in 
previous works have been limited in scope, the present numerical method has no 
restriction, in principle. But, as is usual with numerical analyses, there is the 
parametric restriction resulting from convergence failure. The calculations at  large 
Reynolds number have failed to converge in the range of small time-mean flow, and 
our results in this range are thus limited. 

2. Description of the numerical analysis 
The numerical method used here is based on that developed for the two- 

dimensional plane channel in the earlier papers by T & A and Ayukawa & Takabatake 
(1982). The concepts and procedures for the axisymmetric case are identical with 
those for the plane case, although the details of the calculation are more complicated. 
Thus, we present here only an outline of the numerical method. The terminology in 
the present paper is the same as that in T & A, unless otherwise stated. 

The fluid is assumed to be Newtonian, viscous, homogeneous, and incompressible. 
An axisymmetric tube with longitudinal Z-axis and radial R-axis is considered (see 
figure 1 ) .  An infinite train of sinusoidal waves progresses along the wall with velocity 
c .  In the wave-fixed relative frame (with local coordinates z , r  and velocity 
components u, w), i.e. the wave frame, the flow in the tube is steady. Therefore, we 
shall largely base our analysis on this reference frame, and the flow in the laboratory 
frame (with coordinates Z, R and velocity components U ,  V )  will be derived from this 
steady solution. 

The flow induced by an infinite train of peristaltic waves is expected to be the same 
as a periodic flow that is independent of the boundary conditions a t  the end sections. 
We therefore consider a finite region with an integral number of waves in the wave 
frame. The boundary conditions are arbitrary conditions on the two end sections, the 
symmetry condition on the centre axis, and the no-slip condition on the wall. 
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The Navier-Stokes equations are reduced to the vorticity transport equation, 
involving the vorticity w and the Stokes stream function $. The new variable 6, 
defined by 6 = rw ( r  being the radial coordinate), is introduced to simplify the 
discussion of the numerical method. Then we use a finite-difference technique t o  
solve the problem in terms of $ and 6 in a finite calculation region, together with the 
boundary conditions mentioned above. 

The finite-difference expressions for the governing equations are derived by 
applying the well-known, first-order-accurate, upwind difference technique 
established by Greenspan ( 1968). Namely, an upwind difference approximation is 
used for the convective terms of the vorticity transport equation, while the diffusive 
terms are approximated by using centred differences. The finite-difference formu- 
lation and the computational procedure are very similar to that in T & A. In  
Appendix A we show a representative group of the resulting difference expressions. 
The successive-over-relaxation (SOR) method is used to solve them. In the present 
calculation the convergence criteria for the numerical solutions are chosen as re,, for 
$ and re, for 6, while the criteria e$ for $ and F ,  for w were used in the two- 
dimensional analysis by T & A. Thus, the accuracy of the velocity and vorticity fields 
determined in the present calculation is uniform over the entire flow field, just as in 
the two-dimensional analysis. 

3. Results and discussion 
The problem of peristaltic pumping is governed by four dimensionless parameters : 

the amplitude ratio $. the wavenumber a, the Reynolds number Re, and the 
dimensionless time-mean flow 2. The first three have been defined in (1)-(3) and are 
the same definitions used in T & A. The dimensionless time-mean flow is here 
defined by 

2 = Q/Xch2, (4) 

where Q is the time-mean rate of volume flow. In  T & A this quantity was defined 
as 2 = &/ch. Thus, the parameter 3 indicates the dimensionless mean-volume flow 
per unit area for both the tubular and planar cases, whereas the cross-sectional 
shapes are quite different. There are several definitions of the Reynolds number in 
the literature. but the one used here has been shown to be the correct ratio of inertial 
and viscous terms when peristalsis acts as a pump (Shapiro et al. 1969). It should be 
noted that this definition of the Reynolds number also characterizes the ratio of the 
radial vorticity diffusion time to the period of the wave. 

In  the present calculations, the mesh limits N and M ,  the relaxation factors [, and 
and the weight factors 6, and 6, have the values N = M = 30, [$ = 1.8, c, = 0.8, 

6, = 0.1 and 6, = 0.8, consistent with those in T & A. The tolerances F ,  and e, used 
in the iteration processes are taken to be e, = and e, = 2 x lop4. Among these 
quantities, N ,  M ,  e, and e, relate to the accuracy of the numerical solution, while 

[,, 
The validity of the present analysis has been confirmed by the fact that  the 

calculated velocity profiles for Re = 0.01 and 01 = 0.01 agree within one percent with 
the theory of inertia-free, long-wavelength flow (Re + 0 , m  + 0) developed by Shapiro 
et al. (1969). In  addition, the numerical accuracy a t  moderate values of Re and 01 is 
also judged to be satisfactory through a detailed investigation of particle trajectories 

Calculations are performcd for the various flows over a wide range of Reynolds 

6, and determine the convergence and the stability of calculations, 

63.1).  
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FIGURE 2 .  Examples of particle trajectories; 4 = 0.25, a = 0.2, R, = 10, 5 = 0. 0, initial 
locations : , locations at the end of one and two wave periods. 

numbers, wavenumbers, amplitude ratios, and time-mean flow rates. I n  the following 
sections, representative results of these computations are presented, and arguments 
about the mixing and the transport mechanisms and the mechanical efficiency of 
peristalsis are developed. 

3.1. Peristaltic rejlux 

The ‘peristaltic reflux’ was defined for phenomena such as the retrograde motion of 
bacteria from the bladder to the kidneys. I n  order to ascertain the presence of the 
reflux, it is necessary to examine Lagrangian trajectories of individual fluid particles 
and to determine whether there are any particles undergoing net negative 
displacement. 

The trajectory of a particle can be obtained by integrating the simultaneous 
equations 

dR -u ,  - 
dT = ’ dZ 

dT 
- _  

successively from the initial location of the particle. The integration is carried out 
numerically by the Runge-Kutta method. 

Examples of the particle trajectories a t  moderate Reynolds number are illustrated 
in figure 2, in which the open circles indicate the initial locations and the filled circles 
show the locations a t  the end of one and two wave periods. 

Figure 2 demonstrates that the axisymmetric tube and the two-dimensional plane 
channel flows yield qualitatively similar results for the motion of fluid particles. 
Although the individual particles in the flow repeat the same trajectories periodically, 
they do not describe exactly closed paths, and their orbital motions possess net 
longitudinal displacements. Moreover, the resultant particle period Tp, which is 
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FIGURE 3. Trajectories of fluid particles on the axis for r$ = 0.25, 2 = 0. -, Present method for 
Re = 0.01; ......, Shapiro et ul. (1969) for R,+O, a + 0 ;  ---, Tong & Vawter (1972) for R,-tO. 

Re a 

0.01 

0.1 

0.2 

0.4 

0.01 

0.5 

I} 0.2 

10 

Present 
Dlh ,  TPIT, 

0.292 
1.290 

0.262 
1.265 

0.164 
1.165 

0.871 
-0.128 

~ 

0.109 
1.108 

-0.256 
0.745 

Tong & 
Vawter 

D l A  TPPW 

___ 

0.36 
1.44 

0.22 
1.32 

- 

-0.27 
0.83 

- 

- 

TABLE 2. Particle periods and net longitudinal displacements for particle motions on the axis ; 
r$ = 0.25, 2 = 0 

defined as the time interval of one orbital motion, does not always coincide with the 
wave period T,. These interesting conclusions are identical with those obtained in the 
two-dimensional flow study ; see T & A. 

Figure 3 shows the motions of fluid particles on the axis in the case of zero time- 
mean flow. In  this figure, the present results for Re = 0.01 are compared with 
the solution of Shapiro et al. (1969) obtained in the limit Re+O, a+O, and with the 
numerical results of Tong & Vawter (1972) employing a finite-element method for the 
limit Re + 0. Each fluid particle initially (2' = 0) positioned a t  the trough section of 
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FIGURE 4. Curves of mass transport velocity for the fluid particles, plotted against the mean lateral 
position of the particle trajectory. (a)  q5 = 0.25, a = 0.01, 9 = 0;  (b )  4 = 0.25, R, = 0.01, 2 = 0;  ( c )  
4 = 0.2, a = 0.01, R, = 0.01, -, Present; ---, Shapiro et al. (1969). 

the wave undergoes first a backward motion followed by a forward one, then a 
backward one again, as time progresses. At the end of each particle period (T = Tp), 
the particle experiences a net positive longitudinal displacement for small a, while 
it undergoes a net negative longitudinal displacement for large a. The latter shows 
the presence of the reflux. 

In  our results, shown by solid curves, the cc = 0.01 case is in excellent agreement 
with the theory of Shapiro et al. On the other hand, the results by Tong & Vawter 
show that the displacements during both the backward and the forward motion are 
greater than our estimations, and, therefore, their particle trajectories differ from 
those obtained in the present study and in the study of Shapiro et al. 

Table 2 shows numerical results for the particle period Tp/Tw and the net 
longitudinal displacement D l h  during one particle period for particle motions on the 
axis, together with those obtained by other analyses. Shapiro et al. reported that the 
relationship between D l h  and TJT, was represented by 

D l h  = T,/T,- 1. (6) 
This relationship has to hold not only in the limit Re + 0,  a + 0, but also under the 
conditions of finite values of Re and a, in order that the fluid particles should repeat 
the same trajectories. It can be seen that the present results satisfy this relationship 
very well even for moderate values of Re and a. Thus, although a direct comparison 
of our solution with those of other analyses is unattainable in the range of finite 
Reynolds number and wavenumber, it may be concluded that the numerical method 
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FIGURE 5 .  Profiles of mass transport velocity for $ = 0.2, ct = 0.01, 2 = 0. -, For axisymmetric 
tube; ---, for two-dimensional channel. 

described in this paper produces realistic solutions for finite Reynolds numbers and 
finite wavenumbers. 

The dependences of the radial profile of the mass transport velocity on Re, a and 
8 are shown in figure 4. It was first shown by Stokes (1847) that in a water wave the 
particles of fluid possess steady second-order drift velocities, apart from their orbital 
motions. This mean velocity is usually called the mass transport velocity. The mass 
transport velocity Urn in peristaltic flow can be obtained from 

Urn = D/T,. (7) 

We may ascertain the presence of reflux when there is a region in a tube where Urn 
is negative. It is seen in the figure that U, is negative in the region near the wall of 
the tube and is positive in the region near the axis when both Re and a are small, for 
small values of 8. For this situation, Shapiro et al. concluded that reflux occurred 
near the wall of the tube. But figure 4 indicates that the location of the reflux 
phenomenon in the flow depends upon the magnitudes of Re and a. That is, reflux 
takes place near the axis for large Reynolds number and/or for large wavenumber, 
whereas it occurs near the wall for small Re and small a as pointed out by Shapiro 
et al. The motion of a fluid particle depends on the Eulerian velocity distribution in 
the tube. When Re = 0 and a = 0, the profiles of the longitudinal component of 
velocity are locally Poiseuille-like, and all radial components vanish. However, when 
Re and a: are large the profiles deviate from the parabolic profile due to the effects of 
fluid inertia and wall slope (see T & A). This difference in the velocity field causes the 
different behaviour of a fluid particle according to whether the Reynolds number 
and/or the wavenumber are small or large. 

Although this interesting result with respect to the appearance of reflux is 
essentially identical with that for the two-dimensional case, there is a quantitative 
difference between the magnitudes of the mass transport velocities in the two cases. 
A comparison between them is made in figure 5 ,  which shows that the magnitudes 
of the mass transport velocities in the axisymmetric case are a factor of ten greater 
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FIGURE 6. Wave-frame streamlines in a two-dimensional flow for 0 = 0.7,  a = 0.01, 9 = 0.6. 

than those in the two-dimensional case. Thus it may be concluded that the reflux 
phenomenon is much stronger in a circular tube than in a two-dimensional channel. 
In other words, peristalsis in a tubular configuration results in a strong mixing flow 
compared with that in a two-dimensional plane configuration. 

3.2. Trapping phenomenon 

It has been observed that for certain values of # and 2 a part of the fluid in the tube 
is enclosed by a streamline separated from the axis in the wave frame and is 
transported with a wave speed in the laboratory frame as if it were trapped by the 
wave. Examples of this interesting phenomenon called ‘trapping ’ are shown in 
figure 6 for a two-dimensional flow and in figure 7 for an axisymmetric flow. I n  these 
figures, the computational flow patterns observed in the wave frame are illustrated 
for various flows over a wide range of Reynolds numbers. 

It might be interesting to compare quantitatively these characteristics in the two 
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ZIA 
FIGURE 7 .  Wave-frame streamlines in an axisymmetric flow for q5 = 0.7,  01 = 0.01, 2 = 0.6. 

cases. The choice of the appropriate parameter for comparing these flows must be 
made with caution because the geometrical cross-sections are different. However, 
since we make a comparison for the same values of 2, as well as the same # and a, 
both the dimensionless mean volume flows per unit area and the linear dimensions 
of geometrical shape are the same in both cases. The comparison developed here may 
therefore provide useful insight toward understanding the quantitative differences of 
flow characteristics between the tubular and planar cases. 

In  the case of the two-dimensional flow of figure 6, as the Reynolds number 
increases, the trapping becomes gradually smaller and moves backward, owing to the 
backward flow from the narrowest region of the channel. Trapping ceases to exist 
when the Reynolds number becomes sufficiently large. However, in axisymmetric 
flow, as shown in figure 7, although the front part of the trapping is seen to be broken 
off, the major part does not change shape and the trapping does not move. In  
addition, the maximum magnitude of the stream function in the trapping is kept 
nearly constant when the Reynolds number is increased. 

Jaffrin (1973) studied theoretically the effect of small fluid inertia on the trapping 
phenomenon in a two-dimensional channel flow, and found that the inertial effect 
restrains the appearance of trapping. But he did not refer to the detailed flow pattern 
when the trapping occurred a t  finite Reynolds number. Figures 6 and 7 present this 
situation for both the two-dimensional and axisymmetric flow eases and support the 
conclusion of Jaffrin. 

The flow patterns illustrated in figure 7 are very informative. As the Reynolds 
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FIGURE 8. Definition sketch of the trapping. 

number increases, the streamlines a t  the right-hand side are deflected away from the 
wall, suggesting a flow separation and the formation of the second free eddy. But we 
did not observe the closed streamlines in this region for the flow up to Re = 2. Our 
calculation encountered convergence failure for further increases in the Reynolds 
number. It is possible that the convergence failure might result from the complication 
of the flow due to the appearance of the second eddy. 

In  order to discuss the appearance and growth of the trapping in detail, we define 
certain quantities in figure 8. The dimensions of the trapping I, and I, may be 
measured by the longitudinal and lateral length of the trapped-fluid region enclosed 
by the split streamline. These quantities are normalized with respect to the 
wavelength A and the maximum tube radius r*, respectively. Also, the relative 
intensity of the trapping may be characterized by the ratio of the maximum 
magnitude of the stream function within the trapped region $max to the magnitude 
of the stream function along the tube wall $wall. 

The effects of Reynolds number on the trapping lengths I ,  and 1, and on the 
trapping intensity I$max/$wa,ll are presented in figure 9. The results for axisymmetric 
flow, shown by the solid curves, are compared with those for two-dimensional flow, 
the dashed curves. In  these figures, the value of 2 at  the left end of each curve 
expresses the lower limit of the time-mean flow a t  the first appearance of the 
trapping, and the value a t  the right end gives the maximum time-mean flow 
transported by the peristaltic pumping, that is, when no pressure difference is 
imposed along the tube. However, because the calculations for the axisymmetric case 
a t  R, > 2 failed to converge in the range of small time-mean flow, our results in this 
range are limited. 

In  both the axisymmetric- and two-dimensional-flow cases, the curves of I, and 
I ,  shift toward the right and their slopes become steeper as Re increases. It is evident 
from this fact that  the time-mean flow for the trapping limit increases as the 
Reynolds number increases. In  addition, the trapping a t  large Reynolds numbers can 
grow suddenly as the result of a slight increase in the time-mean flow, in contrast to 
that a t  small Reynolds numbers. In  figure 9(c ) ,  which shows the trapping intensity, 
it is seen that the intensities for the axisymmetric case are almost twenty times as 
large as those for the two-dimensional case, and the dependence of the intensity on 
Reynolds number is less evident in the former case than in the latter. Thus, i t  is 
concluded that the dimension and the intensity of the trapping are less sensitive to 
an increase in Reynolds number in axisymmetric flow than in two-dimensional flow. 
The convective transport of fluid by means of the trapping phenomenon in a circular 
cylindrical tube can therefore take place actively within a wider range of Reynolds 
numbers than in a two-dimensional plane channel. 
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FIGURE 9. Effects of Reynolds number on the trapping phenomenon; 4 = 0.7,  a = 0.01. (a) 
Longitudinal length ; ( b )  lateral length ; ( c )  relative intensity. -, Axisymmetric flow: ---, two- 
dimensional flow. 

3.3. Pumping eficiency 
The mechanical efficiency of peristaltic pumping is defined as the ratio of the useful 
energy W, stored in the fluid to the mechanical work W, delivered to the wall from 
outside agencies, and is given by Shapiro et al. (1969) as 

where hp, is the pressure rise per wavelength and tan 8 denotes the wall slope. H ,  v, 
p ,  vr, T,, and tan 8 represent the instantaneous values a t  the point on the wall. These 
values as well as Q and MA will be calculated numerically, in the manner developed 
in T & A. 

Shapiro et al. (1969) obtained the linear solution for peristaltic flows by considering 
the limiting case of Re + 0, a --f 0, for both the axisymmetric and two-dimensional 
plane geometries. For a+O, the contribution of the viscous stress terms to the 
mechanical-work integral in (8) can be negligible compared with that of the pressure 
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0 

FIGURE 10. Pumping efficiencies for axisymmetric case. (a)  $ = 0.4, R, = 0.01 ; ( b )  $ = 0.4, a = 0.2. 
-, Present; ---, linear solution; -.-, Shapiro et al. (1969). 

term. Thus they obtained a simple expression for the efficiency qt by neglecting the 
contributions of v, and T,, and by solving the linear flow problem. The calculated 
efficiencies were compared with those for the plane case and the results showed that 
the efficiency is much smaller in an axisymmetric configuration than in a plane 
configuration; see figure 4 of Shapiro et al. (1969). But the present authors have 
discovered that the efficiency expression for the axisymmetric case obtained by 
Shapiro et al. is incorrect. They made an error in evaluating the integral of (8). In  
Appendix B, the correct expression for the efficiency for the limiting case R,+O, 
a + 0 is derived by the authors on the basis of the analysis of Shapiro et al. and shall 
be called hereafter the solution of the linear analysis. 

The effects of q5, a,  Re and 2 on the pumping efficiency qt are presented in figure 
10, together with the linear solution and the solution of Shapiro et al. In  the figures, 
the ratio of the time-mean flow 3 to the maximum time-mean flow 3max (for 
MA = 0) is the abscissa. The numerical result for Re = 0.01 and 01 = 0.01 is in excellent 
agreement with the linear solution. As shown in figure lofa), yt decreases with 
increasing a. In  the range of large a,  useful mechanical energy cannot be stored in the 
fluid because large viscous dissipation is produced in the whole region of the flow due 
to the large curvatures of the streamlines. Therefore it is thought that  the efficiency 
decreases with increasing a. Figure 10 (b)  shows that the efficiency also decreases with 
increasing Re. It has been previously reported (T & A ;  Takabatake, Ayukawa & 
Okura 1985) that in the case of large Re the work done by the motion of the wall is 
mainly cancelled between the dilating part and the contracting part and the useful 
energy is not stored in the fluid, while for small Re the flow receives energy equal to 
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FIGURE 1 1 .  Comparison between the efficiencies of the  axisymmetric and the two-dimensional 
plane case; a = 0.2. R, = 1 .  -, For axisymmetric tube;  ---, for two-dimensional channel. 

the work done by the wall to a relatively greater degree than in the large Re case. It 
is therefore thought that the efficiency becomes smaller for increasing Re as a result 
of this variation in energy exchange. 

In  figure 11,  a comparison between the efficiencies of the axisymmetric case and 
the two-dimensional plane case (Takabatake et al. 1985) is made for several values of 
#. As # increases, the backward flow a t  the narrowest region of the tube, which is 
considered to be a kind of ineffective leakage, becomes small, and, in addition, the 
fluid transport can be performed effectively due to the appearance of trapping. 
Hence, the pumping efficiency increases remarkably. From the results of figure 11 it 
may be concluded that the efficiency in a tubular configuration is much higher than 
that in a two-dimensional plane configuration for all values of #. This is in contrast 
to the results of Shapiro et al. 

4. Concluding remarks 
A finite-difference technique employing the upwind SOR method has been adopted 

for the study of axisymmetric peristaltic flows. The influences of the magnitudes of 
the wave amplitude, the wavelength, and the Reynolds number on the flow are 
investigated through numerical calculations over a wide range of these quantities. A 
quantitative comparison is also made between the results for the axisymmetric tube 
and the two-dimensional plane channel. 

The nature of the reflux phenomenon in axisymmetric flow depends upon the 
Reynolds number as well as the wavenumber. That is: the reflux is found near the 
axis of the tube a t  large Reynolds number and/or a t  large wavenumber, while it 
occurs near the tube wall when both Reynolds number and wavenumber are small. 
This feature is qualitatively similar to that obtained in two-dimensional flow by the 
authors. But the fluid mixing that results from peristaltic reflux is much stronger for 
the case of circular cylindrical tubes than for two-dimensional channels. The 
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contribution of the trapping to fluid transport is much grea.ter in cylindrical 
geometry. As a result, the pumping efficiency is also greater for cylindrical tubes than 
for two-dimensional plane channels. It is evident from these facts that the mixing 
and transport mechanisms in peristalsis are more effective in a cylindrical tubular 
configuration than in a plane configuration. 

This work was partially supported by a Grant-in-Aid €or Scientific Research from 
the Ministry of Education (Japan). 

Appendix A. A finite-difference method 

following expressions are derived from the governing equations : 
Here we set out finite-difference expressions for the axisymmetric case. The 

and Di , j ,  K i , j ,  M i , j ,  X i , j ,  Ti , j ,  p, y ,  H ( x )  and sgn (x) are defined as in T & A. 
The difference approximations to < at the boundary are as follows: 



d =--- a2 hl K 1 , j  1 
21 E2 h, T,,j ' 

1 1 a2 d , = 
33 

2 a2 a2 
e oa . = h; k;2 a , M + l r  e1 i  = $ M i , M + l >  

2 a2 1 2 a2 
eZi = -+-(I). hi ~2 a , M + l - M i , M + l ) ,  e3i =-- + - - 1 ( 2 S i , M + l - h i D i , M + 1 ) ,  

' i , M + l  hi 

2 2a2 

1 2 2a2 
f 3  = -~ + - + F K l ,  M + l ( h l  K l , M + l  -w 

r l ,  M+l hl J 

$ i , j  = @ i , j + l  (at the centre 

) ( A 6 )  

(at  the leading end), 

(at the wall), 

(at  the trailing end). 
t 

Appendix B. Pumping efficiency in the linear theory 
We consider the limiting case, Re + 0, a + 0, which is identical with the situation 

considered by Shapiro et al. (1969). I n  the denominator of the efficiency expression, 
(8 ) ,  the contributions of cr, and T,, are negligible for the case of a --f 0. Neglecting these 
terms, the denominator is given as 

) 

Substituting v and p from the linear solutions of Shapiro et al. and H from the 
definition for the wall motion, we finally obtain 

+ 7 $ 4 + ~ $ 6 - 8 ( 1 + ~ $ 2 ) ( 1 - $ 2 ) 2  . (B 2 )  I 
The last term in the brackets of (B 2 )  is missing in the final expression obtained by 
Shapiro et al., that is, equations (31a) and ( 3 1 b )  in their paper. 
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If we consider 4 = 0 and 2/2Zrnax = 0, W, of (B 2 )  will vanish, whereas W, by 
Shapiro et al. will not become zero because this term is missing. Physically, this 
assumption means that the fluid is stationary in the absence of wall motion, hence 
W, should inevitably vanish. 

R E F E R E N C E S  

AYUKAWA, K., KAWAI, T. & KIMURA, M. 1981 Streamlines and path lines in peristaltic flows a t  

AYUKAWA, K. & TAKABATAKE, S. 1982 Pu’umerical analysis of two-dimensional peristaltic flows 

BOHME, G. & FRIEDRICH, R. 1983 Peristaltic flow of viscoelastic liquids. J .  Fluid Mech. 128, 

BRASSEUR, J .  G., CORRSIN, S. & Lu, N. Q. 1987 The influence of a peripheral layer of different 

BROWN, T. D. & HUNG, T.-K. 1977 Computational and experimental investigations of two- 

FUNG, Y. C. & YIH, C. S. 1968 Peristaltic transport. Trans.  A S M E  E :  J .  Appt .  Mech. 35, 

GREENSPAN, D. 1968 Lectures on the Numerical Solution of Linear, Singular, and Nonlinear 

GUPTA, B. B. & SESHADRI, V. 1976 Peristaltic pumping in non-uniform tubes. J .  Biomech. 9,  

HANIN, M. 1968 The flow through a channel due to transversely oscillating walls. Israel J .  Tech. 

JAFFRIN, M. Y. 1973 Inertia and streamline curvature effects on peristaltic pumping. Intl J .  
Engng Sci. 11, 681-699. 

JAFFRIN, M. Y. & SHAPIRO, A. H. 1971 Peristaltic pumping. Ann.  Rev. Fluid Mech. 3, 13-36. 
LI, C. H. 1970 Peristaltic transport in circular cylindrical tubes. J .  Biomech. 3, 513-523. 
LIRON, N. 1976 On peristaltic flow and its efficiency. Bull. Math. Biol. 38, 573-596. 
LONGUET-HIGGINS, &I. S. 1983 Peristaltic pumping in water waves. J .  Fluid Mech. 137, 

MANTON, M. J. 1975 Long-wavelength peristaltic pumping a t  low Reynolds number. J .  Fluid 

POZRIKIDIS, C. 1987 A study of peristaltic flow. J .  Fluid Mech. 180, 515-527. 
RATE, H. J. 1978 Ein Beitrag zur Berechnung einer peristaltischen Stromung in elastischen 

Leitungen. Acta Mech. 31, 1-12. 
SHAPIRO, A. H., JAFFRIN, M. Y. & WEINBERG, S. L. 1969 Peristaltic pumping with long 

wavelengths a t  low Reynolds number. J .  Fluid Mech. 37, 799-825. 
SRIVASTAVA, L. M. & SRIVASTAVA, V. P. 1984 Peristaltic transport of blood: Casson model 11. 

J .  Biomech. 17, 821-829. 
STOKES, G. G. 1847 On the theory of oscillatory waves. Trans. Camb. Phil. SOC. 8, 441-455. 
TAKABATAKE, S. & AYUKAWA, K. 1982 Numerical study of two-dimensional peristaltic flows. 

J .  Fluid Mech. 122, 439-465. 
TAKABATAKE, S., AYUKAWA, K. & OKURA, M. 1985 Numerical analysis of two-dimensional 

peristaltic flows (3rd report ; pumping characteristics of peristaltic transport). Trans.  Japan 
SOC. Mech. Engrs 51, 2365-2372 (in Japanese). 

TONG, P. & VAWTER, D. 1972 An analysis of peristaltic pumping. Trans. A S M E  E :  J .  Appl.  Mech. 

YIN, F. & FUNG, Y. C. 1969 Peristaltic waves in circular cylindrical tubes. Trans.  A S M E  E :  

ZIEN, T. F. & OSTRACH, 8. 1970 A long wave approximation to peristaltic motion. J .  Biomech. 3, 

high Reynolds numbers. Bull. Japan SOC. Mech. Engrs 24, 948-955. 

(1st report; flow pattern). Bull. Japan SOC. Mech. Engrs 25,  1061-1069. 

109-122. 

viscosity on peristaltic pumping with Newtonian fluids. J .  Fluid Mech. 174, 495-519. 

dimensional nonlinear peristaltic flows. J .  Fluid Mech. 83,  249-272. 

66g675. 

Differential Equations, pp. 122-147. Practice-Hall. 

105-109. 

6, 67-71. 

393407. 

Mech. 68, 467476. 

39, 857-862. 

J .  Appl.  Mech. 36, 579-587. 

63-75. 
10 F1.N I93 


